Distributed Digital Preservation with LOCKSS

Nicholas Taylor (@nullhandle)
Program Manager, LOCKSS and Web Archiving
Stanford Libraries

Massive Storage Systems and Technology
14 May 2018
overview

• LOCKSS background
• preservation principles
• distributed preservation
• what’s next for LOCKSS?
(digital) libraries
lots of copies (were already) keeping stuff safe

• print journal holdings incidentally resilient:
 • distributed
 • decentralized
 • irrevocable
 • tamper-evident
 • publisher-independent
move to online publishing

• own → lease
• local custody → contingent access
• lots of distributed copies → fewer, centralized copies

• net effect:
 • endanger scholarly record
 • obviate library role
LOCKSS but for e-journals

- **p2p software** for e-journal preservation
- **restore preservation features** of print journal holdings for digital
- **re-empower libraries**, individually + communally
- **improve durability** of digital scholarly record

[Image: A screenshot of the LOCKSS website, highlighting the project with a focus on preserving e-journals.]
LOCKSS for more than e-journals

• set out to build e-journal preservation system
• ended up building generic digital preservation core
• growing number of communities use to preserve other digital materials
community + digital preservation

• communities complement LOCKSS:
 • resilience against organizational failure
 • native heterogeneity

• preservation is an active community effort

• lots of communities keep stuff safe

“Redwood Canopy” by Floyd Stewart under CC BY-NC-SA 2.0
Preservation Principles
lots of copies

- intuitive **best practice**
- LOCKSS typically operates w/ 4+ copies
- enlist copies to attest to expected integrity value
- lots of copies enables:
 - majority votes w/ minority of participating copies
 - higher-confidence attestations via landslide agreement
routine audit + repair

• ensuring long-term bit integrity
 • must read data to know it’s good
 • easier to repair data sooner

• network nodes conduct polls to validate integrity of distributed copies

• more nodes = more security
 • more nodes can be down
 • more copies can be corrupted
 • ...and polls will still conclude

• nonces force re-hashing

• peers are mutually-distrusting
fail slowly

• fast-operating, tightly-coupled systems fail quickly
• LOCKSS is conservative + sophisticated about repairs
• polls run slow to enable detection + mitigation of cause of damage
threat model

• familiar threats:
 • media + hardware obsolescence
 • software obsolescence
 • natural disaster

• more typical threats:
 • economic failure
 • organizational failure
 • operator error

• security threats:
 • internal attack
 • external attack
distributed + decentralized

- no monopoly on copy-making
- more copies doesn’t mitigate **correlated risk**
- independent, **de-correlated copies**
- minimize central points of failure or vulnerability
no centralized fixity store

• fixity data **subject to same threats** as data whose integrity it assures

• fixity data is **more vulnerable**, in fact, since more valuable + more centralized

• LOCKSS uses fixity data in **limited ways**
local custody

- if preserving data is **core to mission**, LOCKSS helps maintain that competency + commitment in-house
- **unencumbered access** for use by designated community
- **conserving autonomy** + leverage w/ content + service providers
- **jurisdictional transparency** + control
Distributed Preservation

“Catho longtime [explored]” by Bill Collison under CC BY-NC 2.0
where does distributed preservation fit?

• may be **integrated into own infrastructure** (e.g., offsite replication)
• as a wholly **hosted service**:
 • for some, may be **main preservation solution**
 • for others, may **supplement local preservation**

“Stone stacks” by Jack Malvern under [CC BY-NC 2.0](https://creativecommons.org/licenses/by-nc/2.0)
use cases

- scholarly record
- government documents
- web archives
- collaborative collections
- any types of content valued in common by a community
distributed preservation providers

• **hosted services** w/ varied architectures, service tiers, levels of assurance, replication factors

• replication nodes include memory orgs + cloud

• none (including LOCKSS) require local preservation infrastructure

• LOCKSS provides opportunity for co-preservation
What’s Next?
re-architecture rationale

- de-silo + enable external integrations
- foster developer community
- capitalize on work of broader communities
- create space for system enhancements
- evolve w/ web + digital preservation ecosystem
anticipated outcomes

- functional parity + backward compatibility
- components providing value outside of end-to-end system
- better integration + data hand-offs w/ other apps
- increased use to preserve repository content
- increased use to preserve content managed by non-memory institutions
Questions