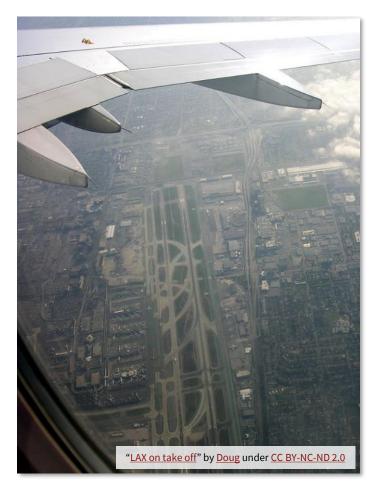


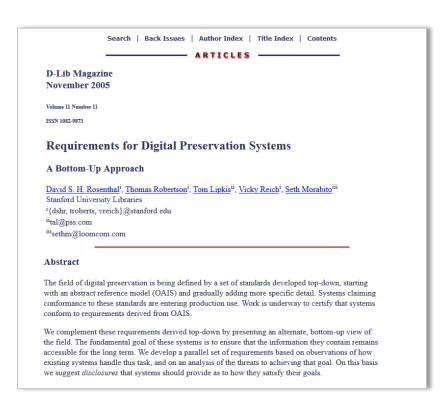
The Cloudy Outlook for Digital Preservation

Nicholas Taylor (<u>@nullhandle</u>) Program Manager Emeritus, <u>LOCKSS</u> and <u>Web Archiving</u> <u>Stanford Libraries</u>


International Conference on Digital Preservation
Cloud Atlas: Navigating the Cloud for Digital Preservation
17 September 2019

overview

- threat modeling
- commercial cloud
- community cloud
- wrap up



threats to digital information

- failures: media, hardware, software, network services, economic, organizational
- obsolescence: media, hardware, software
- errors: communication, operator
- attacks: external, internal
- natural disaster

<u>David S.H. Rosenthal</u> et al: "<u>Requirements for Digital</u> Preservation Systems: A Bottom-Up Approach"

community best practices

Table 1: Version 1 of the Levels of Digital Preservation

Table 1. Version 1 of the i	Level 1 (Protect	Level 2 (Know your	Level 3 (Monitor your	Level 4 (Repair your
	your data)	data)	data)	data)
Storage and	- Two complete	- At least three	- At least one copy in a	- At least three copies
Geographic	copies that are not	complete copies	geographic location	in geographic
Location	collocated	- At least one copy in a	with a different	locations with different
	- For data on	different geographic	disaster threat	disaster threats
	heterogeneous	location	- Obsolescence	- Have a
	media (optical	- Document your	monitoring process for	comprehensive plan in
	discs, hard drives,	storage system(s) and	your storage system(s)	place that will keep
	etc.) get the content	storage media and	and media	files and metadata on
	off the medium and	what you need to use		currently accessible
	into your storage	them		media or systems
	system			
File Fixity and Data	- Check file fixity on	- Check fixity on all	- Check fixity of	- Check fixity of all
Integrity	ingest if it has been	ingests	content at fixed	content in response to
	provided with the	- Use write-blockers	intervals	specific events or
	content	when working with	- Maintain logs of fixity	activities
	- Create fixity info if	original media	info; supply audit on	- Ability to
	it wasn't provided	- Virus-check high risk	demand	replace/repair
	with the content	content	- Ability to detect	corrupted data
			corrupt data	- Ensure no one
			- Virus-check all	person has write
			content	access to all copies

what threats are addressed?

- failures: media, hardware, software, network services, economic, organizational
- obsolescence: media, hardware, software
- errors: communication, operator
- attacks: external, internal
- natural disaster

Table 1: Version 1 of the Levels of Digital Preservation

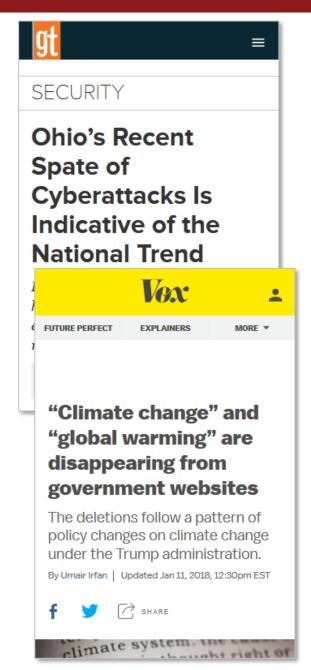
Storage and Geographic Location	Level 4 (Repair your data) - At least three copies in geographic locations with different disaster threats - Have a comprehensive plan in		
	comprehensive plan in place that will keep files and metadata on currently accessible media or systems		
File Fixity and Data Integrity	- Check fixity of all content in response to specific events or activities - Ability to replace/repair corrupted data - Ensure no one person has write access to all copies		

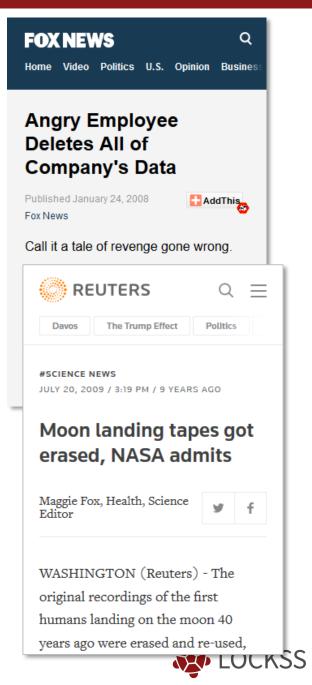
NDSA Levels of Preservation Working Group: "NDSA Levels of Digital Preservation"

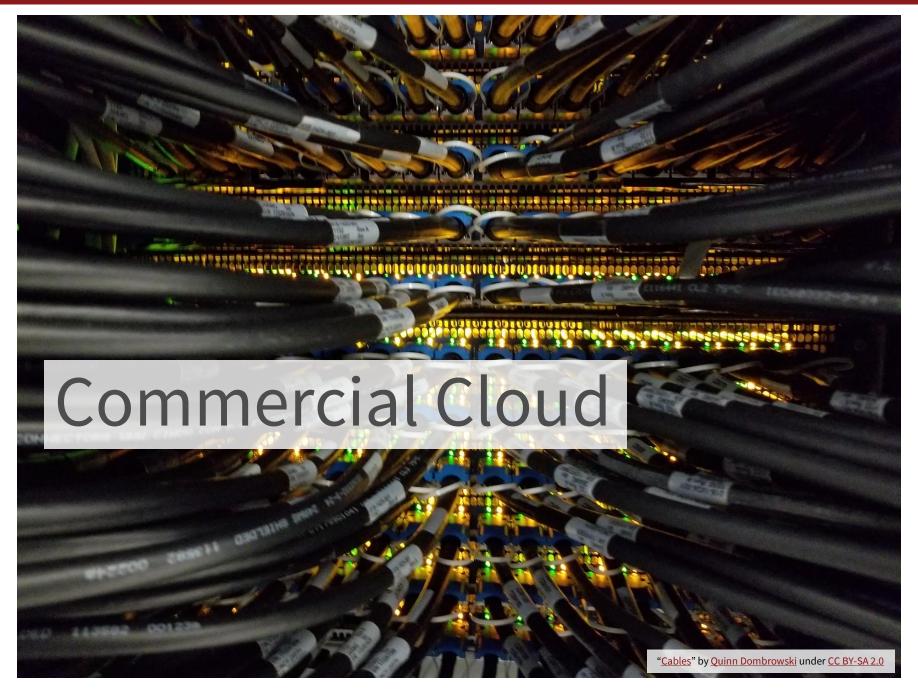
what threats are discounted?

- failures: media, hardware, software, network services, economic, organizational
- **obsolescence**: media, hardware, software
- errors: communication, operator
- attacks: external, internal
- natural disaster

Table 1: Version 1 of the Levels of Digital Preservation


	Level 4 (Repair your data)
Storage and Geographic Location	- At least three copies in geographic locations with different disaster threats - Have a comprehensive plan in place that will keep files and metadata on currently accessible media or systems
File Fixity and Data Integrity	- Check fixity of all content in response to specific events or activities - Ability to replace/repair corrupted data - Ensure no one person has write access to all copies


NDSA Levels of Preservation Working Group: "NDSA Levels of Digital Preservation"



understand + mitigate threats

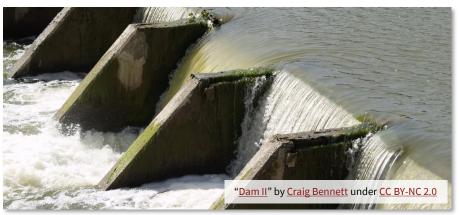
- long-term data integrity is hard
- needs architecture informed by actual leading threats to data
- don't underestimate:
 - people making mistakes
 - attacks on information
 - organizational failure

commercial cloud considerations

- on-demand access
- economic lock-in
- reliability caveats
- opaque data integrity
- security configuration
- non-operational externalities

on-demand access

- minimize idle built-out infrastructure needed for:
 - long-tail access
 - data integrity checks
- shift costs for corpus-level use cases
- but metered access:
 - complicates cost modeling
 - works less well for popular or oft-accessed content



economic lock-in

- CapEx → OpEx yields financial flexibility
- financial flexibility less valuable for inflexible commitment (i.e., longterm preservation)
- prices decline but maybe not as quickly as in competitive market for local hardware refresh
- mitigating strategy: maintain a local copy

long-term storage services (1 PB, 1 month)							
service	ingest	store	export	lock-in factor			
AMZN Glacier	\$2,250	\$4,000	\$55,240	13.8x			
GOOG Coldline	\$3,600	\$7,000	\$83,860	12x			
MSFT Archive	\$6,350	\$2,000	\$16,260	8.1x			

<u>David S.H. Rosenthal</u>: "<u>Cloud for Preservation</u>"

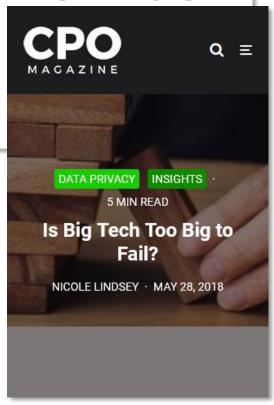
reliability caveats

- "11 nines" of reliability?
 - modeled on hardware failure
 - accounts for ½ of data losses
- ¾ of data losses due to less rationalizable factors: attacks, errors, software failures
 - highly centralized infrastructure more vulnerable
- chance of billing error interrupting service nontrivially more significant than risk of loss suggested by reliability estimate

opaque data integrity

- feature, not a bug?
- hashing data in situ
 requires trusting that
 the service has performed
 computation rather than
 reporting cached value
- may be prohibitively expensive to retrieve content to a trusted environment to perform hashing

security configuration


- monoculture
 vulnerabilities
- greater affordances, better defaults for onpremise security
- consistent leaks from misconfigured cloud services suggest security is a challenge

not all clouds the same

- "The Cloud is just somebody else's computer"
- values-aligned partnerships to build private clouds e.g.,
 - consortial/community
 - focused on particular content types (e.g., software, web archives)
 - for computational research

community cloud considerations

- sustain community capacity
- flexibility + interoperability
- diversity + risk mitigation
- pilot models

sustain community capacity

- can we still claim to have custody + intellectual control over content stored in commercial cloud?
- can we afford to outsource functions core to mission to commercial cloud?
- scholarly publishing is an example of a service ceded to commercial providers

flexibility + interoperability

"[T]he needs of today's diverse scholarly communities are not being met by the existing largely uncoordinated scholarly infrastructure, which is dominated by vendor products that take ownership of the scholarly process and data. We intend to create a new open infrastructure system that will enable us to work in a more integrated, collaborative and strategic way. It will support global connections and consistency where it is appropriate, and local and contextual requirements where that is needed." Invest in Open Leadership: "Preamble, The Why"

diversity + risk mitigation

- lots of copies is necessary but not sufficient
- central points of failure can undermine all copies at once
- multi-organizational preservation storage provides:
 - resilience against organizational failure
 - diversity in technical infrastructure

pilot models

- in original, Global LOCKSS Network, all nodes stored copies
- private LOCKSS networks moving towards hosted service models
- subset of institutions host infrastructure w/ governance by + funding from broader community
- Stanford + trusted partners may serve as anchor storage hosts

Ivy Plus Libraries Confederation

deliberate cloud strategy

- let's be cautious about reducing future flexibility
- let's understand the meaningful differences between use cases
- let's be mindful of tradeoffs
- let's consider what else we can do on open infrastructure, together

